Skip to main content

Advertisement

Log in

Irisin Alleviates Advanced Glycation End Products-Induced Inflammation and Endothelial Dysfunction via Inhibiting ROS-NLRP3 Inflammasome Signaling

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome have been implicated in the initiation or progression of atherosclerosis. Recent research showed that irisin, a newly discovered adipomiokine, alleviates endothelial dysfunction in type 2 diabetes partially via reducing oxidative/nitrative stresses, suggesting that irisin may be a promising candidate for the treatment of vascular complications of diabetes. However, the association between irisin and NLRP3 inflammasome in the pathogenesis of atherosclerosis remains unclear. In the present study, we cultured human umbilical vein endothelial cells (HUVECs) in advanced glycation end products (AGEs) medium; exogenous irisin (0.01, 0.1, 1 μg/ml) were used as an intervention reagent. siRNA and adenoviral vector were constructed to realize silencing and over-expression of NLRP3 gene. Our data showed that irisin significantly reversed AGEs-induced oxidative stress and NLRP3 inflammasome signaling activation (p < 0.05), and increased the endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production in a dose-dependent manner (p < 0.05). siRNA-mediated knockdown NLRP3 facilitated the irisin-mediated anti-inflammatory and antiatherogenic effects (p < 0.05). However, these irisin-mediated effects were reversed by over-expression NLRP3 (p < 0.05). Taken together, our results reveal that irisin alleviates AGEs-induced inflammation and endothelial dysfunction via inhibiting ROS-NLRP3 inflammasome signaling, suggest a likely mechanism for irisin-induced therapeutic effect in vascular complications of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Patel, M.N., R.G. Carroll, S. Galván-Peña, E.L. Mills, R. Olden, M. Triantafilou, A.I. Wolf, C.E. Bryant, K. Triantafilou, and S.L. Masters. 2017. Inflammasome priming in sterile inflammatory disease. Trends in Molecular Medicine 23 (2): 165–180.

    Article  CAS  PubMed  Google Scholar 

  2. Hoseini, Z., F. Sepahvand, B. Rashidi, A. Sahebkar, A. Masoudifar, and H. Mirzaei. 2017. NLRP3 inflammasome: its regulation and involvement in atherosclerosis. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.25930.

  3. Zheng, Y., S.E. Gardner, and M.C. Clarke. 2011. Cell death, damage-associated molecular patterns, and sterile inflammation in cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology 31 (12): 2781–2786.

    Article  CAS  PubMed  Google Scholar 

  4. Koka, S., M. Xia, Y. Chen, O.M. Bhat, X. Yuan, K.M. Boini, and P.L. Li. 2017. Endothelial NLRP3 inflammasome activation and arterial neointima formation associated with acid sphingomyelinase during hypercholesterolemia. Redox Biology 13: 336–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perakakis, N., G.A. Triantafyllou, J.M. Fernández-Real, J.Y. Huh, K.H. Park, J. Seufert, and C.S. Mantzoros. 2017. Physiology and role of irisin in glucose homeostasis. Nature Reviews. Endocrinology 13 (6): 324–337.

    Article  CAS  PubMed  Google Scholar 

  6. Gouveia, M.C., J.P. Vella, F.R. Cafeo, F.L. Affonso Fonseca, and M.R. Bacci. 2016. Association between irisin and major chronic diseases: a review. European Review for Medical and Pharmacological Sciences 20 (19): 4072–4077.

    CAS  PubMed  Google Scholar 

  7. Du, X.L., W.X. Jiang, and Z.T. Lv. 2016. Lower circulating irisin level in patients with diabetes mellitus: a systematic review and meta-analysis. Hormone and Metabolic Research 48 (10): 644–652.

    Article  CAS  PubMed  Google Scholar 

  8. Mahmoodnia, L., M. Sadoughi, A. Ahmadi, and M. Kafeshani. 2016. Relationship between serum irisin, glycemic indices, and renal function in type 2 diabetic patients. Journal of Renal Injury Prevention 6 (2): 88–92.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen, J.Q., Y.Y. Huang, A.M. Gusdon, and S. Qu. 2015. Irisin: a new molecular marker and target in metabolic disorder. Lipids in Health and Disease 14: 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hou, N., G. Du, F. Han, J. Zhang, X. Jiao, and X. Sun. 2017. Irisin regulates heme oxygenase-1/adiponectin axis in perivascular adipose tissue and improves endothelial dysfunction in diet-induced obese mice. Cellular Physiology and Biochemistry 42 (2): 603–614.

    Article  CAS  PubMed  Google Scholar 

  11. Song, H., F. Wu, Y. Zhang, Y. Zhang, F. Wang, M. Jiang, Z. Wang, M. Zhang, S. Li, L. Yang, X.L. Wang, T. Cui, and D. Tang. 2014. Irisin promotes human umbilical vein endothelial cell proliferation through the ERK signaling pathway and partly suppresses high glucose-induced apoptosis. PLoS One 9 (10): e110273.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhu, D., H. Wang, J. Zhang, X. Zhang, C. Xin, F. Zhang, Y. Lee, L. Zhang, K. Lian, W. Yan, X. Ma, Y. Liu, and L. Tao. 2015. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. Journal of Molecular and Cellular Cardiology 87: 138–147.

    Article  CAS  PubMed  Google Scholar 

  13. Xu, Y., L. Feng, S. Wang, Q. Zhu, Z. Zheng, P. Xiang, B. He, and D. Tang. 2011. Calycosin protects HUVECs from advanced glycation end products-induced macrophage infiltration. Journal of Ethnopharmacology 137 (1): 359–370.

    Article  CAS  PubMed  Google Scholar 

  14. Sun, X., X. Jiao, Y. Ma, Y. Liu, L. Zhang, Y. He, and Y. Chen. 2016. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochemical and Biophysical Research Communications 481 (1–2): 63–70.

    Article  CAS  PubMed  Google Scholar 

  15. Gistera, A., and G.K. Hansson. 2017. The immunology of atherosclerosis. Nature Reviews. Nephrology 13 (6): 368–380.

    Article  PubMed  Google Scholar 

  16. Karasawa, T., and M. Takahashi. 2017. Role of NLRP3 inflammasomes in atherosclerosis. Journal of Atherosclerosis and Thrombosis 24 (5): 443–451.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bando, S., D. Fukuda, T. Soeki, et al. 2015. Expression of NLRP3 in subcutaneous adipose tissue is associated with coronary atherosclerosis. Atherosclerosis 242 (2): 407–414.

    Article  CAS  PubMed  Google Scholar 

  18. Afrasyab, A., P. Qu, Y. Zhao, K. Peng, H. Wang, D. Lou, N. Niu, and D. Yuan. 2016. Correlation of NLRP3 with severity and prognosis of coronary atherosclerosis in acute coronary syndrome patients. Heart and Vessels 31 (8): 1218–1229.

    Article  PubMed  Google Scholar 

  19. Wang, L., P. Qu, J. Zhao, and Y. Chang. 2014. NLRP3 and downstream cytokine expression elevated in the monocytes of patients with coronary artery disease. Archives of Medical Science 10 (4): 791–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng, H., J. Gu, F. Gou, W. Huang, C. Gao, G. Chen, Y. Long, X. Zhou, M. Yang, S. Liu, S. Lü, Q. Luo, and Y. Xu. 2016. High glucose and lipopolysaccharide prime NLRP3 inflammasome via ROS/TXNIP pathway in mesangial cells. Journal of Diabetes Research 2016: 6973175.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen, Q., Q. Wang, J. Zhu, Q. Xiao, and L. Zhang. 2017. Reactive oxygen species: key regulators in vascular health and diseases. British Journal of Pharmacology. https://doi.org/10.1111/bph.13828.

  22. Haslund-Vinding, J., G. McBean, V. Jaquet, and F. Vilhardt. 2017. NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. British Journal of Pharmacology 174 (12): 1733–1749.

    Article  CAS  PubMed  Google Scholar 

  23. Loscalzo, J. 2013. The identification of nitric oxide as endothelium-derived relaxing factor. Circulation Research 113 (2): 100–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Förstermann, U., N. Xia, and H. Li. 2017. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circulation Research 120 (4): 713–735.

    Article  PubMed  Google Scholar 

  25. Liu, P., Q. Xie, T. Wei, Y. Chen, H. Chen, and W. Shen. 2015. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats. Biochemical and Biophysical Research Communications 468: 319–325.

    Article  CAS  PubMed  Google Scholar 

  26. Itoh, Y., H. Toriumi, S. Yamada, H. Hoshino, and N. Suzuki. 2010. Resident endothelial cells surrounding damaged arterial endothelium reendothelialize the lesion. Arteriosclerosis, Thrombosis, and Vascular Biology 30: 1725–1732.

    Article  CAS  PubMed  Google Scholar 

  27. Arias-Loste, M.T., I. Ranchal, M. Romero-Gómez, and J. Crespo. 2014. Irisin, a link among fatty liver disease, physical inactivity and insulin resistance. International Journal of Molecular Sciences 15 (12): 23163–23178.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lu, J., G. Xiang, M. Liu, W. Mei, L. Xiang, and J. Dong. 2015. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-null diabetic mice. Atherosclerosis 243 (2): 438–448.

    Article  CAS  PubMed  Google Scholar 

  29. Gannon, N.P., R.A. Vaughan, R. Garcia-Smith, M. Bisoffi, and K.A. Trujillo. 2015. Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. International Journal of Cancer 136 (4): E197–E202.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Y., H. Song, Y. Zhang, et al. 2016. Irisin inhibits atherosclerosis by promoting endothelial proliferation through microRNA126-5p. Journal of the American Heart Association 5 (9): e004031.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zheng, F., S. Xing, Z. Gong, W. Mu, and Q. Xing. 2014. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediators of Inflammation 2014: 507208.

    PubMed  PubMed Central  Google Scholar 

  32. Menu, P., M. Pellegrin, J.F. Aubert, K. Bouzourene, A. Tardivel, L. Mazzolai, and J. Tschopp. 2011. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death & Disease 2: e137.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Center of Peripheral Vascular Surgery (Affiliated Hospital of Southwest Medical University).

Funding

This work was supported by the Office of Science Technology and Intellectual Property of Luzhou (No. 14141) and the Program of the Affiliated Hospital of Southwest Medical University (No. 14070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to You-Hua Xu or Yan-Zheng He.

Ethics declarations

Disclosure

Wei Huang is co-first author.

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Huang, W., Peng, J. et al. Irisin Alleviates Advanced Glycation End Products-Induced Inflammation and Endothelial Dysfunction via Inhibiting ROS-NLRP3 Inflammasome Signaling. Inflammation 41, 260–275 (2018). https://doi.org/10.1007/s10753-017-0685-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0685-3

KEY WORDS

Navigation